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ABSTRACT

A theory of transport coefficients in weakly compressible turbulence is derived by applying

Yoshizawa's two-scale direct interaction approximation to the compressible equations of

motion linearized about a state of incompressible turbulence. The result is a generalization

of the eddy viscosity representation of incompressible turbulence. In addition to the usual

incompressible eddy viscosity, the calculation generates eddy diffusivities for entropy and

pressure, and an effective bulk viscosity acting on the mean flow. The compressible fluc-

tuations also generate an effective turbulent mean pressure and corrections to the speed of

sound. Finally, a prediction unique to Yoshizawa's two-scale approximation is that terms

containing gradients of incompressible turbulence quantities also appear in the mean flow

equations. The form these terms take is described.
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I. Introduction

This paper derives a gradient transport model for weakly compressible turbulence

which generalizes the eddy viscosity description of incompressible turbulence. The model

is derived by applying Yoshizawa's two-scale direct interaction approximation (TSDIA) 1

to the theory of weakly compressible turbulence. In this theory, the compressible field

quantities are analyzed by linearization about a state of incompressible turbulence. 2'a

The present model can be compared to Yoshizawa's theory, 4 the first comprehensive

attempt to derive a general transport model for compressible turbulence. Like Yoshizawa's,

the present theory requires the derivation of a direct interaction approximation 5 (DIA) for

compressible turbulence. Whereas Yoshizawa's theory allows strong compressibility effects,

the restriction in the present work to weak compressibility makes possible a somewhat more

complete treatment of the DIA response functions and leads to more explicit expressions

for the transport coefficients. In particular, the present theory treats the complete matrix

of response functions, including various coupling terms which produce the wave motions

characteristic of compressible flow.

The DIA for weakly compressible turbulence derived here can be compared to the-

ories proposed by Bertoglio et al. _ Like them, we derive approximate formulas for the

response functions; although a comprehensive DIA theory of compressible turbulence was

formulated by Hartke et al,7 explicit expressions for the DIA field descriptors were not

given. Renormalization group methods were applied to strongly compressible turbulence

by Staroselski et al. s The spectral dynamics of weakly compressible turbulence has also

been modeled using EDQNM by Bertoglio et al e and by Bataille et al.9

The theory of weakly compressible turbulence has been considered from the TSDIA

viewpoint by Shimomura;10 however, this work had the quite different goal of a more refined

treatment of buoyancy effects than is possible in the Boussinesq approximation. Another

refinement of the Boussinesq equations through low Math number expansions is investi-

gated by Mlaouah et al.ll A distinct theory of weak compressibility has been proposed by

Girimaji. 12 In this theory, the compressible part of the velocity field is decomposed into

pressure and temperature-dominated components. Any of these theories could have been

used as a starting point for TSDIA instead of the straightforward linearization adopted

here.



A more traditional approach to modeling compressible turbulence generalizes incom-

pressible models through mass-weighted averaging; a definitive survey of this viewpoint

has been given by Huang et al. is Like Yoshizawa, we attempt instead to derive a model

from a dynamic theory of compressible turbulence. Ristorcelli 14 has proposed a pseudo-

sound theory of compressible turbulence for compact flows of engineering interest. In this

weakly compressible theory the length scales of the acoustic fluctuations scale as the in-

verse Mach number with respect to the vortical length scales. This allows the neglect of

wave propagation effects.

The present model is derived from a three-component decomposition of the com-

pressible flow field: after the usual Reynolds decomposition into mean and fluctuating

components, the fluctuations are further decomposed following Zank and Matthaeus _ and

Erlebacher et al 3 into an incompressible field and small compressible perturbations. The

compressible field is treated by linearization about the incompressible field; it follows that

this theory only applies to compressible turbulence at small turbulent Mach number.

As usual, the Reynolds averaging introduces various correlations of fluctuating quanti-

ties which require closure; whereas for incompressible turbulence, only the Reynolds stress

arises this way, the increased number of field quantities describing compressible turbulence

naturally generates a larger number of such correlations. These unknown correlations are

all closed in terms of gradients of the mean fields and single point descriptors of the in-

compressible field using Yoshizawa's TSDIA formalism. 1 Unlike Yoshizawa's theory 4 of

compressible turbulence, which introduces the density variance as a new descriptor of

strongly compressible turbulence, the present linearized theory only requires single point

descriptors of incompressible turbulence. These are chosen following the usual two equation

models as turbulence kinetic energy It" and dissipation rate e.

As Yoshizawa has demonstrated, 1 the TSDIA really generates an infinite series for the

unknown correlations both in powers of the mean gradients and in the order of differentia-

tion of the mean fields. The present analysis is limited to the terms of lowest order in this

expansion: those which are linear in the mean fields and which contain spatial derivatives

of order two at. most. A large number of potentially interesting nonlinear effects, analo-

gous to the normal stress effects in simple incompressible shear flow, could be described

by computing the higher order terms in the series.
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In addition to the usual incompressibleeddy viscosity, the calculation generateseddy

diffusivities for entropy and pressureand an effective bulk viscosity acting on the mean

flow. The compressiblefluctuations alsogeneratean effectiveturbulent mean pressureand

corrections to the speedof sound. The "renormalized" bulk viscosity, mean pressure,and

sound speedare consequencesof coupling amongthe responseequationswhich correspond

to the generation of sound wavesin compressible turbulence. These effects would be

suppressedby a _'diagonal"approximation which ignoressuchcouplings.

Theseeffectiveproperties havethe character of enhancements of molecular properties

by turbulent fluctuations. But a prediction that appears to be unique to TSDIA is that

terms containing gradients of turbulence quantities also appear in the mean flow equations.

Because of the large number of such terms and their complexity, only a preliminary account

of the effect of these terms on single point modeling is given. Explicit evaluation of these

terms is reserved for future work.

It should be stressed that the present model only attempts to close the correlations

which arise from Reynolds averaging of the equations of motion. The effects of compress-

ibility on the two-equation model 14'1s are not addressed, although we indicate later how

these effects could be analyzed within the present setting.

An important question concerns the validity of linearized theories of compressible tur-

bulence at asymptotically large times: 16 in the infinite time limit, the compressible field

might build up to amplitude levels sufficient to invalidate a linearized theory. For exam-

ple, Staroselski et al s argue that equipartition between compressible and incompressible

fluctuations is a possible outcome of the long time evolution of compressible turbulence.

But ,,-hen the compressible field is generated entirely from the incompressible field, the

weakness of the relevant energy transfer mechanism may permit a range of times, suffi-

ciently large for many applications, over which the linearization remains valid. Numerical

simulations of energy transfer in weakly compressible turbulence by Bataille et a117 provide

examples of this possibility.

II. Formulation of the theory of weakly compressible turbulence

The inviscid governing equations are taken in the form

Os

0--7+ u. Vs = 0
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0u 1
+u Vu+--Vp=O

Ot p

Op+u Vp+TpV.u 0 (1)
Ot

with dependent variables entropy s, velocity u, and pressure p. Density can be evaluated

from entropy and pressure through the thermodynamic relation

s/Cv = log p- - 7log p-- (2)
P0 P0

In what follows, s denotes entropy divided by Cv to simplify the notation.

The analysis is based on a three-component decomposition of the velocity field into

mean quantities, incompressible fluctuations, and small compressible perturbations. Ac-

cordingly, first introduce the usual Reynolds decomposition of the fields s, u, p into mean

and fluctuations and then further decompose the fluctuations into an incompressible field

and compressible perturbations following Zank and Matthaeus. 2 Thus, the field quantities

are written as

s =S+s'

u=U+u°°+u'

p = p+pO. +p, (3)

where S, U, P denote the mean entropy, velocity, and pressure and u °¢, p_ the incompress-

ible velocity and pressure fluctuations. Note that the field U need not be solenoidal. Write

the density as

p= R+p'

The density fluctuation p' can be evaluated by linearizing Eq. (2) as

p' = C-2(p _ + p') -- 7-1Rs '

where the mean speed of sound is defined by the thermodynamic relation

P

C2 --_7_

(4)

(5)

The compressible velocity perturbation u' need not be irrotational; in fact, the interaction

of the compressible field with the base isotropic incompressible field u °¢ generates addi-

tional solenoidal motions. The dynamics of the compressible perturbations s', u',p' will
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be analyzed by linearization about the mean fields and incompressible fluctuations: this

defines the theory of weakly compressible turbulence.

The mean equations are obtained by substituting the decomposition Eq. (3) into Eq.

(1), dropping terms which are nonlinear in the compressible quantities, and averaging.

Then

OS

Of

R OU
(--gi-

OP

Ot

--+U.VS=-V.<u°°s '>

+U.VU)+VP=-RV-<u°Ou °°+u°ou '>-R<u'-Vuoo>

(6)

1 _ _ pOOp, 1V < =p p + > __ < s'Vp o°> (7)+
2 7

-- + U • VP + 7PV- U = -V. < uOOpOO + u°Cp ' + 7u'pOO >

+(7-1)<u"VPOO > (s)

where in Eq. (7), p' has been eliminated in favor of p_,p', and s' using Eq. (5). The

derivation of Eq. (7) requires the expansion of the ratio 1/(R + p') in powers of p'/R.

Following the usual practice in the theory of compressible turbulence, only the term linear

in p' has been retained. Computing this series to higher order in p' would generate a

series in powers of p°0/c2. Although linearization does not justify ignoring these terms,

they generate a series in powers of the turbulent Math number which can reasonably be

truncated at lowest order.

The incompressible field satisfies

Ou°° uOO 1 oo uOO (VU) s] + < u°°
--N-+ .VuOO+_Vp =-[U.VuOO+ •
V'uOO =0

_7U°C > (9)

(10)

Eqs. (9) and (10) require that the incompressible pressure pOO satisfy the Poisson equation

1V OO uOO
V._ p =--V'( .Vu °°)-V.[U.Vuoo+u °°'(VU) s+ <u °°'VuOO >]

These equations have been investigated in Yoshizawa's TSDIA analysis of incompressible

turbulence; 1 the results of that analysis will be assumed in what follows. The traceless

part of the mean velocity gradient appears in the incompressible momentum equation Eq.

(9); it is defined by the decomposition

vu = (vu) s + (vu) c
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in which

= ou, lOG- 5
1 oG

(vu) - 5

The component (VU) c is added to the compressible momentum equation below.

The derivation of the linearized equations for the compressible fluctuations is routine

and leads to

08 t

0-T + u_¢" Vs' + C s = 0 (11)

Ou r u_ ¢ ur 1 , p'
+ • Vu' + • Vu ¢¢ + _Vp c2R2 Vp _ + 1ns'Vp_ + C u = 0 (12)

"7

Op' uO¢ u' u' u' C p (13)--_ + • _7P r + Rc2V • + • Vp _ -4- 7p_V • + = _pi

where the source term in Eq. (13) is the incompressible quantity

pt_OP _ u _
Ot + • Vp _ (14)

and the terms coupling the fluctuating and mean fields in Eqs. (11)-(13) are

C 8=U.Vs'+u °°.VS+u'.VS-<u °°.Vs'>

p, pl , 1

C u = U-Vu' + u'. VU - _-_VP - _-5-Vp - _fic2p_Vp °_

1 p, VpOO 1
+ u _ • (VU) c- < u _ • Vu' + u'Vu _ - R----ff - R---Tp'Vp' >

C p = U- Vp _ + U- Vp' + u _ • VP + 7p_V • U + u' • VP

+'Tp'V.U- < u _c.Vp ec+u _.Vp'+u'.Vp _+Tp_V-u' >

(15)

(16)

17)

In Eq. (16), the density fluctuation must be expressed in terms of entropy and pressure

by Eq. (5).

III. DIA analysis of homogeneous isotropic weakly compressible turbulence

Analytical theories of turbulence such as DIA 5 provide a systematic procedure for

evaluating the correlations generated by Reynolds averaging. Although DIA can be for-

mulated even for arbitrarily inhomogeneous and anisotropic turbulence, 18 the resulting



theory proves to be intractably complex. TSDIA provides a useful approximation. Heuris-

tically, it computes perturbatively about an isotropic and locally homogeneous state of

turbulence which is described to lowest order by DIA. The effects of coupling to mean

fields are evaluated by a perturbation series in a scale ratio parameter. This perturbative

treatment restricts TSDIA to weakly inhomogeneous and anisotropic turbulence; however,

since universal single-point modeling of turbulence with arbitrarily strong inhomogene-

ity and anisotropy is impossible in principle, this restriction does not unduly limit the

applicability of TSDIA to turbulence modeling.

Analytically, the local homogeneity of the lowest order TSDIA field means that mo-

ments of this field at each point are evaluated using DIA results for homogeneous isotropic

turbulence generalized for weak inhomogeneity by allowing all single point descriptors to

vary slowly with space and time. This approximation, justified in the formal development

of TSDIA, 1 occurs in many physical theories, for example in thermodynamics, when a

thermodynamic system is taken to have a temporally or spatially variable temperature.

In the present problem, Eqs. (11)-(13) describe a coupled system of passive fields. The

application of DIA to this problem is not straightforward because the coupling between

the compressible and incompressible fields cannot be analyzed exactly. Approximations

are required which are both analytically tractable and preserve the important physical

properties of the problem. Further discussion appears ill Appendix I.

The simplest suitable approximation is obtained by treating both the mean field cou-

plings and the terms which depend on the incompressible pressure as perturbations. Thus,

write Eqs. (11)-(13) as

-_ + u _ . X7_ - _C s

OU 11o¢-- + • Vu + u. Vu °° + lVp = (p/pZo)Vp°° C _
Ot Po

op + vp + po% V•u = -/- (u- vp + u) -
Ot

(18)

(19)

(20)

In Eqs. (18)-(20), the primes on compressible field quantities have been dropped. Since we

are treating the homogeneous problem, R = P0 and c = Co are assumed constant in Eqs.

(18)-(20). Following the perturbation scheme outlined in Appendix I, we must evaluate
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the response matrix of the homogeneous system

03

+ u _ • Vs = 0

0U gO o-- + • Vu + u. Vu _ + 1Vp
o%' po

Op + u_ " Vp + mco2V, u = 0
Ot

(21)

(22)

and treat all terms on the right side of Eqs. (18)-(20) perturbatively. The corresponding

homogeneous form of the incompressible equations are

structure

1
+ u _ . Vu o¢ + _Vp _

0t p0

V.u_=0

=0

and as usual, these equations imply that the pressure satisfies

V2p _ = -p0V. (u _ • Vu _)

Note that the s equation Eq. (21) decouples from the others: s is a passive scalar

advected by the incompressible velocity field u _.

V ss 0

G = 0 a_ -= a_ p (24)
0 G_ u G pp

The elements of the response matrix are defined as 5

G" =< $s/(_f s >

Gi_" =< 6ui/_fy >

G_ p =< _ui/6f P >

cf =< @/zfy >

G pp =< 6p/$fP >

where the quantities fs,f_,.fP are small perturbations added respectively to Eqs. (21)-

(23).

The spatial homogeneity of the fields justifies Fourier transformation in space. Since

s is a, passive scalar, its response function G 8" satisfies the standard DIA equation 19

OG_ ftOt (k,t,r) + ds _(k,t, 8)G_8(k,s,r) = 6(t - r) (25)

The response matrix therefore has the

0

=0

(23)



where the damping factor 77"s in Eq. (25) is evaluated as

kmkn [ dpdq G_S(p,t,r)Qmn(q,t,r) (26)r/_S(k, t, r)
dk =p+q

In Eq. (26), Qmn is the incompressible two time correlation function

< u_(k,t)u_(k',r) > = Qmn(k,t,r)_(k + k')

The (_ function forcing in Eq. (25) summarizes the initial and causality conditions for G _*

which are

G_(k,t,r)=0 fort<r

GSS(k,t,t) = 1

The spatial Fourier transforms of Eqs. (22) and (23) are

OUi(k't) + likip(k't)+ L dpdq r_m.(k, p,q)um(p,t)u.(q,t )_= 0
O_ po =p+q

_tt(k,t)+ipoc2kiui(k,t)+ L dpdqp2(k,p,q)u_(p,t)p(q,t)=O (27)
=p+q

The couplings between the compressible and incompressible fields in Eq. (27) are defined

by
F_mn(k,p,q) =i(qmSi_ + Pn6im)

F_ (k, p, q) = ik,

The DIA equations for the response functions are easily shown to be

1 pu up apju .__ 7]is , uuG,_'_+ --ik_a_ + ,7, * u,, ass = ,5(t - ,.)
Po

Gyp -t- 1-_-ikiGPP + rl_" * a p" -t- 7]iusu * a 2" = 0
Po

• 2 _ ._ _ rlpp G_ _ 0apu + zpoc kjGji + rlj * Gji + * =

• 2 ,_p P_' Gy p + rl pp a pp _(t r)GPP -4- zpoc kj Gj + rlj * * = -

where

f

_(k, t, r) = - ]k?]ij __=p+q

vT"(k,t, ,-)= - fk=,.+q

rlpu(k, t, r) = -
/,.

r) _--- -- Jk/=p+q
7?PV(k,

(28)

* denotes time integration as in Eq. (25) and the damping functions r/are given by

dpdq 1 ""(q,t, _)r_j k)Qm_(p, t, r)r_m. (k, p, q)G,_p (q, -p,

r_m.(k,p, r)r_(q, k)Qm_(p,t, r)dpdq q)G_P(q, t, -p,

dpdq F2m(k,p,q)G_"(q,t,r)Fl_j(q,-p,k)Q_m(P,t,r)

dpdq F_(k,p,q)GVV(q,t,r)F2,(q,-p,k)Qm_(P,t, r) (29)

9



Now introduce the normalized Helmholtz decompositionof the field ui:

ui(k,t) = wi(k,t) + iklk -l ¢(k,t)

The isotropy of the lowest order fluctuating fields implies that the damping and response

functions must have the form

r/i'_U(k, t, r) = rl_'W(k,t,r)Pij(k) + rl¢¢(k,t,r)Pi*j(k)

up
r]i (k,t,r) : t]4_P(k,t,r)iki k-i

rYe(k, t, r) = -rtP°( k, t, r )ikj k -1 (30)

and

aiT(k,,,,) = aww(k,t,,)p,(k) + Goo(k,*,,)PS(k)

G_'P(k, t, s) = GeP(k, t, s)ikik -1

G_"(k, t, s) = -GP¢(k, t, s)ikjk -1 (31)

In Eqs. (30) and (31), Pij and P,_ are the transverse and longitudinal projection operators

Pij(k) = _,j - kikjk-:

Pi_(k)= kikjk -2

Substitute Eqs. (30) and (31) into the governing equations Eq. (28) and separate

transverse and longitudinal components. The result is that G ww decouples from the rest

of the system and satisfies, in the abridged notation of Eq. (28),

G,,W + rl_ , G_., = 6(t - r) (32)

while the remaining response functions satisfy the system

1 0

+ ' r/pp ]r/P*

0- poc2 k

"G,_

* Gp ¢

1
Gpo Gpp j

Gp p = $(t - r) 0 (33)

10



The solution of Eq. (33) for the responseequationsis discussedlater. For now, the response

matrix with the simplified structure of Eq. (24) is used to derive formal expressionsfor

the transport coefficients.

IV. TSDIA analysis of inhomogeneous weakly compressible turbulence

TSDIA introduces, in addition to the usual Reynolds averaging, a two-scale decom-

position

0 0 0

= + ox--;
0 0 0

-- "Jv" --

Ot Or' OT
(34)

where x' and t' describe small turbulent scales of motion and X and T describe large scale

flow features including inhomogeneity and anisotropy. It is natural to assume that the mean

quantities depend only on the slow variables X, T. Substitution of the scale decomposition

Eq. (34) in the mean equations Eqs. (6)-(8) therefore leaves these equations unaltered.

Corresponding to Eq. (34), write the compressible field quantities as

s = s(x', X.t', , T)

ui = ui(x', X, t', T)

p = p(x', X, t', T)

and apply the scale decompositions of Eq. (34) to the equations for fluctuations Eqs. (18)-

(20). With these substitutions, dropping primes in the small scale variables, the fluctuation

equations take the form

0-7 + U. V_s + • V_s =

1 V -.T TM

Ou uO. V_u _+ R _p0--7 + U. Vxu+ .V_u+ u. =

Op +u V_p+u _c V_p+Rc2Vx u _Tv
Ot

(35)

(36)

(37)

where

Os u _° V xS
7" = +u-vx ) + .vxs+u.

11
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Ou 1

T" = (8-_ + u. Vxu) + u _ • Vxu + u. vx,, _ + -_Vxp

P P P_7 P P
R2 Vxp _ - R---ffVxp_ + u- VxU - _-y xP - _-Vxp - _-ffVxp

+ u_" (VxU) c (39)

Op u_
.T"v = (--_ + U . V xp) + • V xp + Rc2V x • u

+ u • Vxp _ + u. Vzp _ + 7pC_Vx • u + 7p°°Vz • u

(Op°°
+ _--_- + U • Vxp °°) + U. V_p °° + u °° • VxP + 7p°°Vx • U

Op OO U °c
+TPV.x'U+u'VxP+u°°'VxP°°+(--_+ "Vxp c¢) (40)

In Eqs. (35)-(40), the variable mean density R and sound speed c appear because we now

consider weakly inhomogeneous fields. The averages in Eqs. (15)-(17), which maintain

the property that the fluctuation equations have zero mean, have been dropped in Eqs.

(38)-(40) because they do not contribute to the formation of moments at the level of

approximation to be introduced later.

Since the lowest order field is locally homogeneous, a spatial Fourier transform is again

appropriate. The spatial part of the decomposition Eq. (34) becomes

0 0
-- iki + --

Oxi OXi

With these assumptions, the fluctuating fields are expressed in terms of the corresponding

forces and response functions as

_0 ts(k,X,t,r) = - dr GSS(k,X,t,r,T)U'(k,X,r,T)

/o'ui(k,X,t,T) =- dr [G_7(k,X,t,,-,T)77(k,X,r,T )

up+ ai (k,X,t,r,T)Y'(k,X,r,T)]

/o'p(k,X,t,T) = - dr [a"(k, X, t, r, T)_-'(k, X, r, r)

+ a'_"(k,X,t,,',T)77(k,X,r,r)l

(41)

(42)

(43)

The possibility of writing explicit expressions like Eqs. (41)-(43) is an important advantage

of the DIA formalism. But it must be emphasized that these expressions can only be used

to form moments containing s, ui, and p: DIA provides statistical formulas for the field

quantities, not pointwise solutions of the equations of motion.

12



Analytically, local homogeneity means that the various response and correlation func-

tions G(k, X, t, r, T) and Q(k, X, t, r, T) are evaluated as the corresponding homogeneous

quantities G(k, t, r) and Q(k, t, r) but with all single point moments which characterize

the fields treated as functions of X, T. For example, consider the typical forms 1 for the

response and correlation functions of isotropic incompressible turbulence,

G(k,t,r) = exp[-r/(k)(t - r)]H(t - r)

1

Q( lc, t, r) = -4-_C K¢2/3 k-ll/3 exp[-rl( k )

r]( k ) : CDel/3 k 2/3

t--rl]

k > ko (44)

where H is the unit step function. These expressions are generalized to weakly inhomoge-

neous incompressible turbulence by letting e and k0 depend on X and T.

With these results, it is straightforward to evaluate the moments needed to close the

mean flow equations. In evaluating the moments, the following truncations of the series

which the TSDIA generates are adopted:

(a) only modeled terms which are at most linear in the mean gradients are retained,

(b) only modeled terms with at most second order derivatives with respect to X,T are

retained,

(c) modeled terms derived by repeated convolution with the compressible response func-

tions are dropped.

Whereas (a) and (b) follow from the formal development of TSDIA as a perturbation

expansion, (c) is an additional approximation.

In the following, dependence on X, T will be understood but not written explicitly.

A. Entropy velocity correlation

The entropy velocity correlation appears in the mean entropy equation Eq. (6). Write

this correlation as the integral

[ dk < u_(-k,t)s(k,t) > (45)< >
J

13



Substitute the expression for s in terms of its response function Eq. (41) in Eq. (45) to

obtain

/ /0t- < u_Cs > = dk dr GSS(k,t,r)x

Os
{ < u i (-k,t)_-_(k,r) > (46a)

t Os
+ < u_(-k, )Up0--_p (k,r) > (46b)

OS (46c)
+ < u_(-k,t)u_(k,r) > OX-----j

OS

+ < u_(-k,t)uj(k,r) > 0--_j} (46d)

The formation of nonzero correlations between u _ and compressible fields in lines

(46a), (46b), (46d) requires an additional time integration over the response functions; the

approximation (c) above suppresses these terms. It can be noted that some of these terms

will also generate products of gradients and gradients of higher order which are also ex-

cluded by (a) and (b).

Term (46c) contributes a gradient transport expression

/ /0- < u_(-k,t)s(k,t) > = dk dr C_S(k,t,r)Qij(k,t,r) OS (47)
OXj

To lowest order of TSDIA, the integral in Eq. (47) is e_-aluated by substituting isotropic

quasi-homogeneous forms for G _ and Qij:

Qii(k,t,r) = Q(k,t,r)Pij(k)

a'(k, t,,-) = (48)

To construct a single point model, it is assumed that the fast time scale dependence

is stationary. Therefore, the response and correlation functions depend only the time

difference 7" = t - r:

Q( k,t,r) = Q(k,t - r) = Q(k, r)

14
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Furthermore, since the turbulent time scalesare much shorter than those of the mean

motion, the long time limit t --+ oc is taken. Substituting Eqs. (48) and (49) in Eq. (47)

and taking the long time limit results in the gradient transport model

_,ss OS (50)
- < _T_ > = -OXi

where the transport coefficient is defined by

/0 /0v_ , _- _2 4rrk2dk dr as_(k,v)Q(k,r) (51)
3

The factor of 2/3 arises from angular integration of the transverse projection operator

Pij. This type of expression for a transport coefficient is familiar from Yoshizawa's TSDIA

calculations.l,4

B. Velocity pressure correlations

Four such correlations appear in Eq. (8) for the mean pressure: < u_p °° >,

< u_p >, < up °¢ >, and < u- V'p _ >.

1. The correlation < u_p _ >

The incompressible correlation < uO°p °° > has been analyzed by Shimomura 2° who

finds that it is a diffusion of turbulence quantities. In terms of single point quantities, the

integrals become
1,22 . OK K Oc

- <p_uF > = -Ttcl-gG_ +C_--)_ox_ (52)

Terms of this type will also appear in the closure of correlations containing compressible

fields and will be discussed below.

2. The correlation < u_p >

W'rite the second velocity pressure correlation as the integral

- < u_p > = - /
dk < uF(-k,, t)p(k, t) >

I'f dk dr {a"(k,t,r) < u_(-k,t)SVP(k,r) >
,]

+ a_"(k,t,r) < u_°(-k,t)Y_(k,r) >} (53)
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Closureof this moment requires that the forcesfrom Eqs. (38)-(40) be substituted in Eq.

(53). The approximation in which only one time convolution with a compressibleresponse

function is allowed shows,asfor entropy correlations, that we need only consider terms

containing correlations of the incompressiblefield with itself; the result of evaluating only
such terms appears in Appendix II, Sect. A.

Further analysis showsthat someof these terms vanish. A list of the nonvanishing

terms also appears in Appendix II, Sect. A. Among these terms, somehave the form

familiar from eddy viscositymodeling: they are (1) proportional to gradientsof meanfields,

and (2) nonvanishingin regionsof constant turbulence properties. Property (2) gives these

terms the character of enhancementsof molecularproperties due to turbulent fluctuations;

the molecular properties themselvesare the result instead of thermal fluctuations. The

transport coefficient v8_of Eq. (51) is an example. Such terms will be denoted by the

subscript M; only these terms will be evaluated in detail in this paper.

But TSDIA also generates a second set of terms which depend on gradients of tur-

bulence quantities. Shimomura's closure of the pressure velocity correlation Eq. (52) is

of this type. Unlike the terms just described, these terms vanish when the turbulence

properties are constant. Since turbulence properties are rarely constant in practice, it is

an important and nontrivial prediction of TSDIA that such corrections to the transport

model exist. Because of the large number of such terms and the lengthy analysis required

to evaluate many of them, we defer a complete analysis of these terms to later work. In

this paper, such terms will be labelled with the subscript T. A preliminary description of

them appears in Appendix III.

With these conventions,

< u°CP > = < u_P >M -4"- < U_p >T

It is shown in Appendix II, Sect. A that

OP

-- < uC_P >M -_ PPlPoxi (54)

where, repeating the argument which led to Eq. (51), the transport coefficient v_ p is given

by

/o- -_ 47rk2dk dr GP'(k,_-)Q(k,7) (55)
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. The correlation < up °c >

Write the third velocity pressure correlation as the integral

- < u,p _ > = _/ dk p_(-k,t)u,(k,t)< >

/ /o'= dk dr {G_V(k,t,r) < p_(-k,t)_V(k,r) >

+ a,"_(k,t,_)< p_(-k,t)grj'(k,r)>} (56)

The terms generated by substituting the forces of Eqs. (38)-(40) in Eq. (56) are listed in

Appendix II, Sect. B. The result has the form

< up _ > = < up _ > M -4- < uP °c >T

where the mean flow dependent term is

-- < uip _ >M =

and the transport coefficient apep is given by

oP
__#_-- (57)

OX_

u_v-lfo _ _o _ _Rec 2 47rk 2 dk dr{ G_W(k,r)+ G¢°(k,r)}QP(k,T) (58)

In Eq. (58), we have assumed, corresponding to Eq. (49) for the two-time velocity corre-

lation function, an isotropic stationary form for the two-time pressure correlation

< p_(k,t)p_(k,r) > = QP(k,r)6(k + k')

Whereas the single time pressure correlation function is described by Batchelor's analysis, 21

calculation of the two-time pressure correlation remains an open problem.

Eq. (57) has an anti-diffusive character, but the complete transport coefficient is

uvv = u_ v - upv where u_ p is evaluated in Eq. (55); it will be shown later that the negative

contribution is smaller in magnitude than the positive contribution by a factor of the order

of the turbulent Math number squared.
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4. The correlation < u. Vp _° >

The fourth pressure velocity correlation is written as an integral

- < u-Vp _ > = dk dr

0

{ < G_V(k,_,r).rV(k,r)(-iki + _)p_(-k,t) >

+ < Gij (k,t,r).Ty(k,r)(-ikj + -_j)p (-k,t) >}

It is shown in Appendix II, Sect. C that the only mean flow dependent term is

_ OUm

-- < U" V x p °° > M = H-_--Xm

where the effective pressure II is given by

/o /0H = "), 4_rk2dk dr kGe)P(k, r)QV(k, r)

(59)

(60)

C. Velocity-velocity correlations

The velocity-velocity correlations arise in the mean momentum equation Eq. (7).

There are three such correlations: < u_u _ >, < u°Cu >, and < u • Vu _ >

1. The correlation < u°Ou _ >

The incompressible correlation < u°_u _ > has been extensively investigated by

Yoshizawa. 1 At the level of approximation evaluated here, the result of the TSDIA analysis

is the usual linear eddy viscosity representation

2 1

-- < u_u_ > = --_It'6ij + v(Sij - "_Skk6ij) (61)

where Sij is the strain rate

OUi OUj

-=ox--;+ox--;
and the incompressible eddy viscosity is the integral I

4/o /0v= 15 4rrk2dlc dr Q(k,r)a(k,r) (62)

where G is the incompressible velocity response function.
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2. The correlation < u°_u >

The second correlation is written as the integral

- < _7_i > = - f dk u_(-k, t)uj(k, t)< >

= dk dr {a2_(k,t,r) < _ (-k,)_-r_(,r) >

+ a_P(k,t,r) < u_(-k,t)_"(k,r) >}

Reference to Appendix II Sect. D shows that there is only one mean flow dependent term,

which can be described as a renormalized bulk viscosity

OUm _ij (63)
-- < tlTU j >M = p_Uoxm

where the transport coefficient is given by

,u 1 47ck2d k dr GWW(k,T)Q(k,v) (64)
l] 1 _-- -_

3. The correlation < u. Vu _ >

This correlation is written as the integral

f 0 )wOO.- <(u-Vu_)i > = - dk <uj(k,t)(-ikj+-_j i (-k,t)>

= dk dr {Gy_,(k,t,r) < .T_(k,r)(-ikj + t) >

0 )u_(-k,t) >}
+ a_P(k,t,r) < J=P/k,r)(-ik, +

It is shown in Appendix II, Sect. E that the gradient transport term is

1 0P

- < (u-KTu°°)i >M = _OXi (65)

where the coefficient/_ is defined by

1/0 /0-_ = 4rck2dk dr kG4_P(k,r)Q(k,T) (66)

It will be shown later that/_ is related to an effective or renormalized speed of sound waves

propagating in the mean flow. This effect has been predicted by Chandrasekhar 22 and by

Staroselski et al. s
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D. Pressure density correlation

There are three terms: < p_p_ >, < pp_ > and < sETp °° >.

1. The correlation < p_p_ >

The incompressible pressure correlation < p_p_ > is the subject of Batchelor's classic

analysis 21 which gives

< p_CpCC > = Cpi(2 (67)

where the constant Cp can be evaluated theoretically or from measured data. This result

also holds in the lowest order of TSDIA.

2. The correlation < pp_ >

For this correlation,

= -_/ dk <p_(-k,t)p(k,t) >< p_p >

/ /o'= dk dr{aP'(k, t, r) < p_(-k,t)F'(k,r) >

+ afU(k,t,r) < p_(-k,t)i_y(k,r) >}

In Appendix II Sect. F, it is shown that the mean flow dependent term is

- < PP_ > M = 11 C U 2 OXp (68)

where the effective bulk viscosity is defined by

R2c2v_ _ = 7 47rk2dk dr GVV(k,r)Q'(k,r) (69)

Note finally that since there is no pressure source in 9r', the correlation < sp a >

vanishes to this order.

Introducing only the mean flow dependent terms, Eqs. (50), (54), (57), (59), (61), (63),

(65), and (68) computed by TSDIA into Eqs. (6)-(8), we obtain the gradient transport

model for weakly compressible turbulence,

os
-_- + u. vs = v. (._'vs) (70)

0U 1 1 2
---_-+U.VU+(_ /_)VP=V.{-6KI+v[VU+(vu)T]S}+v(v"uv. UXT1)

oP
+ V. VP + (_ - -})PV. U = V-(v"VP) (72)
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The gradients of turbulence quantities generated by TSDIA can of course be added as well.

A preliminary qualitative description of these terms and a discussion of the form of the

resulting model appears in Appendix III.

The transport coefficients in Eqs. (70)-(72) are found from Eqs. (51), (55), (58), (60),

(62), (64), (66), and (69) above and are summarized here for convenient reference as

/0 /04 4rrk2d k dr G(k,r)Q(k,r) (73)
_--- 1"-"5

v_s= 2 47rk2d k dr G_(k,'r)Q(k,'r) (74)
3

_pp= _2 4_k2dk dTa,,(k,-_)Q(k,._)
3

1 4rck 2 dk dr{ G'_'_'(k,r)+ Ge_*(k,r)}QV(k, r) (75)
C 2

"}'= (7- 1)II/P (76)

(77)j0 f0I1 = 7 4rck2dk dr kGCV(k,r)QP(k,r)

vuu = 1 47rk2d k dr GWW(k,r)Q(k,'r) (78)
3

/o /o7 4rrk2dk dr GVV(k,r)QP(k,r)
R2 c 2

:/o /o= 4zck2dk dr kGCp(k,r)Q(k,r) (79)

The eddy viscosity v and eddy diffusivity v ss are transport terms of the type familiar

from studies of incompressible turbulence. The term _u is an effective bulk viscosity

generated by the compressible fluctuations. The modified pressure H has been introduced

into the transport model Eq. (71) through the modified specific heat ratio _ defined by

Eq. (76). The turbulent fluctuations therefore modify not only the viscosities seen by the

mean flow, but also the effective 7. Of course, the thermodynamic specific heat ratio is

unchanged. The TSDIA expressions for II demonstrate that this modification of 7 is a

long time effect: at short times, H ",_ t 2, hence "_ _ _ + O(t2).

To clarify the role of the/_ term, note that if the mean field is treated as an ensemble

mean, then it can contain non-random sound waves. The propagation speed of these waves

can be found by linearizing the mean flow equations about a constant state, setting

P= Po+P'
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U = Uo + U _

R = Ro + R _

where P0 and R0 satisfy the thermodynamic relation co = (TPo/Ro) 1/2 where Co is the

sound speed at constant pressure Po and density R0. The standard derivation shows that

sound waves propagate in the mean field with speed

R_c2 R0h1=1 c0_[1- 7(_- i) ][1- -_]
1

c 2= hP0 -(7- 1)n][R0 (80)

By evaluating the terms II and/) explicitly later, it will be shown that Eq. (80) corresponds

to an increase in the effective speed of sound in the mean flow. An argument for the en-

hancement of the speed of sound by compressible fluctuations is given by Chandrasekhar; 22

Staroselski et al s discuss this effect in the case of strong compressibility.

V. Evaluation of the transport coefficients

Explicit expressions for the response functions are needed in order to evaluate Eqs.

(73)-(79) for the transport coefficients. In TSDIA calculations 1 for incompressible turbu-

lence, the required expressions are given the Kolmogorov inertial range forms Eq. (44). In

the present case, it is necessary to solve Eqs. (28) for the compressible response functions.

The solution of these equations is difficult because the damping factors r/ of Eq. (29)

depend on the response functions themselves. Although these equations are already the

result of several approximations, the desirability of analytical expressions for the transport

coefficients justifies further approximations.

First, it will be convenient to replace the damping by Markovian damping by setting

For time stationarity, appropriate to the lowest order TSDIA field,

_(k)= dT.,7(k,7.)

where 7- -- t - r denotes time difference. Equivalently, in frequency space

(81)

_(k)=_(k,o)=_(k)
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This Markovianization is familiar in statistical physics23and is implicit in all turbulence

modeling. It essentially statesthat turbulent processesoccur much faster than mean flow

processes.When this assumptionis not valid, universal single time turbulence modeling is

impossible in principle. Further discussioncan be found in the recentwork of Yoshizawa24

and Woodruff.25We note that the fluctuation-dissipation relation which connectsthe two-

time correlation and the responsefunction in Eq. (44) is justified for Markovianized

theories._5

The time stationary form of the responseequationsEq. (33) which includes the initial

conditions is

(82)

The Markovianized damping factors Eq. (29) with Eq. (81) can be rewritten as

rl_'W(k) = - 1pij(k ) dr dpdq F_mn(k, p, q)GWU'(q, r)x
=p-t-q

1 k)Qmr(p, r)p./q)rprj (q, -p,

1 Pij(k) dr dpdq 1r_._. (k, p, q)G+¢(q, r)×
2 ---p-t-q

• 1
P:,(q)rp_j (q,-p, k)Qm_(p, r)

f0_ j/k 1 w_r/*+(k) = -Pi}(k) dr dpdq Fim,(k,p,q)G (q,r)x
=p+q

Pnp(q)F_j (q,-p, k)Qm_(p, T)

• rlm.(k,- Pij(k) dr dpdq p, q)G+°(q, r)x
=p+q

• 1 k)Qmr(p, r)P,_p(q)Fp_j (q, -p,

flop(k) = ik_k -_ dr dpdq p,q)G_'(q,r)r2_(q,-p,k)Qm_(P, r)
=p+q

_P¢(k,'r) = -ikjk -1 dr dpdq p2(k,p,q)G{U(q,'r)r_,-j(q,-p,k)Q,'m(P, r
=p+q

r/PP(k, r) = _ / F_ (k, p, q)GPP (q, r )F_ ( q, -p, k )Qm, (P, r) (S3)dpdq
Jk =p+q

The Markovianized system Eq. (82) for the response functions is solved approximately

by perturbing about purely incompressible damping. Note first that Eq. (32) for G _"
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reduces to the equation for the response function of a passive vector field if time integrals

containing G ¢¢ are ignored in comparison to time integrals containing G ww in tlae integral

for r/ww in Eq. (83). The self-consistency of this approximation will be demonstrated later:

it will be shown that a consequence of this approximation is that time integrals in G ¢¢ are

of order c -2 times time integrals in G ww. So approximate G ww by the response function

of a passive vector field

a'U'(k,t,s) = exp[-r/WW(k)(t - s)]H(t - s) (84)

where the damping factor r/w_ is related to the incompressible damping function r/through

r/(]¢) -- CD ¢1/3k2/3 (85)

In Eq. (85), aw is the inverse Prandtl number for convection of w. This quantity can

be evaluated theoretically following the calculation of the Prandtl number for passive

fields. 26'27 Eqs. (83) show that the integrals for the damping factors 7]¢p,r/p¢ r/pp all

contain the corresponding response functions G Cp, G Pc, G pp. Only the integral for 7?¢¢ has

a contribution which depends on G ww. Assume further that time integrals which contain

the response functions G ¢P, G pC, G PP are small compared to time integrals which contain

G w_. Then set as a first approximation

=

r/oP(k) = = r/PP(k) = 0

where o_, is another inverse Prandtl number which can be computed by evaluating the

integrals in Eq. (83). Like Eq. (84), it will be shown subsequently that this approximation

is self consistent: by computing response functions and corrected damping factors, we will

find that 77*p, r/p¢, r/pp are of the order c -1 times r/m*. With this initial approximation, the

solution of Eq. (82) is

=

GPP(k) =

G¢*(k) =

Gpo( ) =

-po k

-¢z 2 + c2 k 2 - iwa,r/( k )

-iw + a r/( k )

_.j2 + c2 k2 _ iwac_r/( k )

--W 2 + C2]¢2 -- i_o_Or/(k)

P0c 2k

_w2 + c2k 2 _ i_c_,_r/(k)
(86)
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The corresponding time domain expressions for the response functions are

r) - p!_exp(-acrl(k)r/2)sin(Sr)H(T)__G*P(k,

C2_

GPe(k, T) : po-_-exp(-acrl(k)r/2)sm(Sr)H(T)

GPP( k, r) : exp(- a,_,l(k)w/2)cos(Sr)H(r)

+ acr/(k________)exp (--ae, r/(k)T /2) sin(ST )H(T)
2S

a_e'( k, w ) = exp(- aW/( k)r/2)cos( Sr )H (r)

exp(- 

where

(87)

S = {c2k 2 1 2 2 1/2 (88)- }

This approximation can be improved by substituting the response functions of Eq. (87) into

the formulas Eq. (83) for the damping factors. The corrected values of rlCp, ripe, rlVV contain

terms which oscillate rapidly with frequency ck; time integrals of these quantities will

consequently be of order c -1 . Consequently, the corrected rlCV, r/pC, r/pp are of the order c -1

times r/_0. By solving Eq. (82) for the response functions with this second approximation

for the rfis, a second approximation to the response matrix is generated. This iteration

generates a sequence of approximate solutions to Eq. (82) containing increasingly high

order powers of the time scale ratio rl(k)/ck. The approximation Eqs. (86)-(87) is the

approximation of lowest order. This approximation has also been stated by Bertoglio et

el. 6

With these approximations, it is possible to evaluate both the transport coefficients

of Eqs. (73)-(79) and the correlations of compressible field quantities which enter the

two-equation model for weakly compressible turbulence. These correlations, such as the

pressure-dilatation and dilatational dissipation, are believed is to be crucial to explaining

compressibility effects on mixing layer growth. To evaluate them, it is necessary to solve

Eqs. (18)-(20), with all mean field contributions dropped, to express the compressible

fields as integrals of the response functions of Eq. (86) and the incompressible source term

pt of Eq. (14). The result will express these compressible correlations in terms of the

two-time correlation

QiTj(k,t,r)6(k + k') = < p_(k,t)p_(k',r) >
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Although this program is completely routine, Q_ is a sixth order correlation of velocity

components, therefore explicit evaluation of the required correlations will be quite lengthy.

This part of the model development is left to subsequent work.

To evaluate the transport coefficients, we apply the inertial range formula Eq. (44)

with the single time correlation function given by the cutoff Kolmogorov spectrum

{ CK_2/3k -s/3 if ko <_ k < kdE(k)=Q(k)/47rk _= 0 if k_< ko or k_>kd
(89)

In Eq. (89), kd is proportional to the Kolmogorov scale; the convergence of all integrals

in this theory as kd ---+ oo implies that we can set kd ---=oc and ignore its finite value. The

large scale cutoff k0 is defined in terms of the kinetic energy of turbulence K through

K = _Ch'c2/3ko 2/3

We take also

G_S(k, v) = exp[-ar?(k)r]H(_-) (90)

where _ is the inverse Prandtl number for a passive scalar. 27 Pending a more complete

investigation, we postulate for the two time pressure correlation

1

QP(k, r)- 4_kSEP(k)exp[-ap_(k) l r [] (91)

where the single time pressure spectrum is given by Batchelor's well-known relation

EP(k) = Cso2P/3k-7/3 (92)

The spectrum constant CB and Prandtl number 1/ap are evaluated theoretically or from

data. In evaluating integrals dependent on the term S of Eq. (88), we will make the

leading order approximation

S,,_ck

which is consistent with the assumption of small turbulent Mach number. Given these

approximations, it is easy to evaluate the transport coefficients in terms of single point

quantities.
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The coefficient u _ of Eq. (74) is evaluated as

/0 /ov_ _ 2 dk dr GSS(k,T)E(k)exp(-7?r)
3

_ _o_ E(k)
21 dk
3_+ 1 _(k)

2 1 CKel/3k-4/30
3a+ I CD

_ 2 1 (Ch.CD)_ 1 K 2

9a+l
(93)

The transport coefficient v _s describes the convection of a passive scalar, and is therefore

of order My where the turbulent Mach number is Mt = K1/2/c.

The coefficient v pp is evaluated from Eq. (73) as

r)}EV(k)exp(-avr]r)

Ep(k)

1 CB1M2K2
Ol p "JY O_w C D j t C

(94)

f0 f0vp v = _2 dk drGPV( k, r )E( k )exp(--r/v )
3

/o /oC 2

dk2 12 1
= 0 + 1) E(k) c23 ap + aw

1 1 CB] e -2= [_(_,+ 1)CI,'CD---5_e+_-_D c-Sko

= 8-_CKa[(a¢ + 1)ChCD

This evaluation is correct to lowest order in Mr; including the contribution from G *¢ would,

in view of Eq. (86), lead to corrections of order Mt 4. Diffusion of pressure is therefore an

O(NIt 2 ) phenomenon.

In evaluating II from Eq. (77), we will again compute to leading order in Mr. Thus,

(95)

f0 f0II= _, 4_rk3dk dr GCP(k, r)QP(k, r)

[oo dk CB e4/3k_7/3 + O(M 4)
Jo 2poc 2

< (pO_)2>
= -7 2poc 2

where Eq. (67) can be substituted for the total pressure variance so that

II _ -IfM_ (96)
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For the bulk viscosity v u'', Eq. (77) implies

/0... = _1 4_k2dk dr aww(k,r)Q(k,r)
3

/ /o-'_ 47rk2dk dr GPP(k,T)QP(k,r) (97)

Note that the negative contribution to Eq. (97) is of order c -2 compared to the first,

therefore it suffices to evaluate the first term only. The result is

f0 _ 2 _ E(k)v _" = dk 9 aw + 1 _(k)

__ 1 1 CI_- 1/3ko4/3
6a_+l Co

_ 2 1 (Ct.CD)_ 1K 2
27 at, + 1 e (98)

Note the somewhat surprising conclusion that the bulk viscosity has an O(M°t ) contribution

from the fluctuating w field. The reason is that the decorrelation time of the w field appears

in the expressions for the transport coefficients, not its amplitude, and that in the present

approximation for the response functions, w decorrelates like a passive vector. Although

the bulk viscosity does not vanish in the limit Mt ---* O, incompressibility is maintained

through the condition that V. U _ 0.

Evaluating/_ to leading order in Mt from Eq. (79),

1/0 /0-_ = 4_k2dk dr ka_"(k,r)Q(k,r)

1/o°°- R dk c-2E(k)

1 2
= --_M; (99)

Combining the results of Eqs. (96) and (99) in the formula Eq. (80) for the effective speed

of mean flow sound waves,

C2= c211 + Mt 2]

since II/c 2 ,,,, M 4 according to Eq. (96). This result agrees up to the constant multiply-

ing M 2 with the prediction of Chandrasekhar 22 for the speed of propagation of density

correlations.
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To summarize, by substituting the leading order terms in Mt from Eqs. (93)-(99) for

the transport coefficients in Eqs. (70)-(72), we obtain the mean flow equations

.... C K2OS+U VS V ( _--VS)
Ot e

ou0--_- + U-VU + [1 + M]]VP

+ v(c. v. v)
£

OP

Of

= V-{-}KI + C_I(2[VUc + (vu)T]S}

--+ U.VP +7[I+C-_M_]PV'U= V'(CvM2K2VP)
g

(100)

where the model constants C_,CT,Cv, C,,C_ are given by explicit integral expressions

containing the velocity inertial range constants C/_- and CD and the incompressible pressure

inertial range constants CB and C_p.

VI. Improved approximate system of equations

Eqs. (21)-(123) were derived by treating all incompressible pressure terms as perturba-

tions. This approximation lead to the decoupling of the entropy equation and consequently

to the simple partitioned structure Eq. (24) of the response matrix. If instead all of the

pressure terms in Eqs. (18)-(20) were treated non-perturbatively, the appearance of en-

tropy in the momentum equation would cause the response matrix computed by DIA to

be a completely filled three by three block matrix. Even an approximate solution of the

corresponding response equations would be more difficult.

However, the decoupling of entropy and the convenient matrix structure of Eq. (24)

can be retained by treating only the term coupling s and p_ as a perturbation. This

approximation is particularly reasonable since it is found in numerical simulations 2s that

homogeneous compressible turbulence is nearly isentropic. With this approximation, the

response equations still have the form of Eq. (28), but the damping factors become

rhj (k,t,r)= dpdq p,q)Gnv(q,t,r)Y_rj(q,-p,k)Qmr(p,t,r)
Jk =p+q

+ dR----i7 fk=p+q dpdqpikjQP(P't'r)GPV(q't'r)

,],"P(k, t, r) = - [ dpdq F_mn(k, p, q)G_V(q,t,r)F2p(q,-p,k)Qmp(P,t, r)
dk =p+q
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1 j(=p+q dpdq pipjG_(q,t,r)QP(p,t.r)+ cZR'------_

r/_U(k' t' r) = - i dpdq F_(k,p,q)G_=(q,t,r)r_j(q,-p,k)O_p(p,t,r)
=p+q

7 z fk dpdq "1'- qikia i (q,t, rlQP(p,t,r)
=p+q

rfl'P(k' t' r) = - i dpdq r2(k,p, q)G'P(q,t,r)F2q(q,-p,k)Qm(p,t,r)
=p+q

7 fk dpdq qipjG_]'(q,t,r)QP(p,t,r)
c2 R 2 =p+q

In this approximation, the incompressible pressure correlations appear in the expressions

for damping of the compressible fields which take the form

G(k,T) ,_ exp[--r/(k)T + O(M2)]

The appearance of Mt in the response and time correlation functions is regularizing in the

sense that time integrals

1

a + O(M 2)

and the theory is therefore well behaved even if Mt becomes large. This provides a more

fundamental view of the role of pressure fluctuations and is suggestive for generalization

of this theory to strong compressibility.

VII. Conclusions

TSDIA provides a systematic approach to the derivation of a transport model for

weakly compressible turbulence. The occurrence of diffusivities for entropy and pressure

and of shear and bulk viscosities acting on the mean flow are effects that could be antic-

ipated by analogy with incompressible turbulence modeling. However, by incorporating

the effects of wave motion into the description of compressible turbulence, we find Mach

number-dependent modifications of the specific heat ratio and the speed of sound. TSDIA

further predicts that terms dependent on gradients of turbulence quantities will appear in

the mean flow equations. At this point, we have only given a preliminary account of these

effects, but it is clear that they could not be predicted by other methods.
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Nonlinear effects, analogous to normal stress effects in simple shear flow, are also

accessible to TSDIA analysis. The lengthy analyses required to evaluate such effects can

be expedited by symbolic calculations. 2° Other more straightforward extensions of this

analysis are to compressible heat transfer modeling, gravitational effects, and effects of

rotation on compressible turbulence. DIA and TSDIA provide a unified framework in

which to analyze such coupled effects in a general and systematic manner.

Open issues include the accurate evaluation of turbulent gradient terms and the con-

sideration of the effects of compressibility on the two equation model. It is evident that

these effects will be of order M_, but they should be evaluated for potential extension of

this theory to strong compressibility.

APPENDIX I. Outline of the DIA theory of passive fields coupled to incom-

pressible turbulence

Let a general system of fluctuating fields qi be coupled to incompressible turbulence

by equations of the form

J_k ' U__)i(k,t)+A_qk(k,t)+ dpdq {B_(k, p, q) u (p,t)
=p+q

i (101)+ Ck(k, p , q)p_(p,t)}qk(q,t) + .A_qk(k,t) = 0

where A represents linear couplings among the qi, B and C couple the qi to incompressible

turbulence, and A couples qi to external fields. DIA closes all moments of the qi in terms

of the response matrix 5

G} = < 6qi/6f j >

where f3 is a small perturbation added to the right side of the equation for qJ in Eq. (101).

DIA also provides a set of evolution equations for this matrix of the general form

i k(k,t,s)G}(k,t,s) + A_G_(k, Ls) + .AkGj

/o'+ dr ri;(k, t, r)G_(k, r, s) = 6}_(t- s)

in which the damping factors 7/are

rlp(ik, _, s) = [ dpdq {B ki"(k, p, q)B w, (q,-p,k)G_(p,_,s)Qg,(q,t,s)i
Jk =p+q

+ C_(k,p,q)C_(q,-p,k)G_(P,t,_)QV(q,t,s)}

(102)
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Note that the damping factors 71depend on the various couplings through their dependence

on the response functions.

Turbulence of the fields qi generated by some external agency is described by the

inhomogeneous form of Eq. (101),

" J_k i#(_i(k,t) + A_kqk(k,t) + dpdq {B k (k,p,q)u_(p,t)qk(q,t)
=p+q

+ C_(k,p,q)P_(P,t)qk(q,t) + Aikqk(k,t) = Fi(k,t) (103)

which has the formal solution

/0'qi(k,_) = ds G}(k,_,s)FJ(k,s) (104)

It must be understood that Eq. (104) may only be applied to form correlations of the

fluctuating fields q'; DIA thus provides a _ta_,istical solution to Eq. (103), not a strict

pointwise solution. It can be noted that D.IA is the first in a sequence of successively more

elaborate statistical approximations. 29

Even the simplest equations of the general type of Eq. (102), such as the DIA equations

for shear flow, 19 seem to defy analysis. A simplification which makes some progress possible

is to treat the external field couplings perturbatively. Thus, rewrite Eq. (101) as

• . BiJuocqk •it i + A'jq _ + k j +C;p_q 3 = -A}q j (105)

and treat the right side as a small forcing term. If the response matrix Gioj for the left

side of Eq. (105) can be evaluated, then it is possible to construct a formal perturbation

series in powers of .,4 which satisfies Eq. (105): write

qi= + +... (106)

i is of order p in .4, then substitute in Eq. (105). The solution of the inhomogeneouswhere qp

system Eq. (103)is Eq. (106)with

q_(k,t) = jfOt

q_(k,t) = fo t

i j
ds aoj(k,t,s)F (k,s)

ds t,s)qJ(k,s)G;j(k,

qi,(k,t) = ds iGoj(k,t , s)qJ_l(k, s)
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A particular perturbation expansion of this form was proposed by Leslie 19 to solve the

DIA shear flow equations. This expansion is essentially a Neumann series for the response

matrix in powers of ,,4. TSDIA can also be understood in part as an expansion of this

type.

It may prove difficult to evaluate the response matrix even from the left side of Eq.

(105). The difficulties are caused more by coupling terms like B and U than by A, which

can often be diagonalized. A simplification which carries the procedure leading from Eq.

(101) to Eq. (105) one step further is to treat all couplings among the qi as perturbations.

This defines the diagonal approximation in which the response functions are evaluated from

the simplified system

ij oc_i i oc i
{ti + Aiq i -t- B i Uj c1 "1-CiP q = 0 no sum on i

As before, the couplings can be reintroduced perturbatively; however, it will not be nec-

essary to write the expressions generated by this expansion explicitly. Note that any

combination of coupling terms can be treated perturbatively in this fashion.

Applied to the system Eq. (105), the diagonal approximation will conceal an inter-

esting physical property of compressible turbulence: the occurrence of wave motions. In

order to reveal these motions, it is necessary to find an approximation scheme intermedi-

ate in complexity between the diagonal approximation and the full system of governing

equations. The approximation represented by Eq. (28) and the approximation outlined in

Sect. VI both have this property.

APPENDIX II. List of correlations

A. < u°_p >

//o'- <u_'p> = dk dr

{ + CPP(k, t,r)• < u_(-k,t)--0-_(k,Op°° r) >

+ GPP(k,t,r) < u_(-k,t)upOP°*(k r) >
OXp" '

+ GPV(k,t,r) < u_(-k,t)Upikpp_(k,r) >

OP
+ GP'(k,t,r) < u_(-k,t)uF(k,r) >

OXj

(107)

(a)

(b)

(c)

(d)
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+ GPP(k,t,r)7 < u_'(-k,t)p°°(k,r) > --

OP°c r) >
+ GPP(k,t,r) < uT(-k,t)--_-r (k,

+ GPP(k, t, r) -.,./u=p+q

+ GPP(k, t, r) ..]u=p+q

1 f
- G_U(k,t, c2R2 Jk=p+q dpdq

_ G_U(k,t,r) 1 fk dpdq
=p+q

1

-C_=(k't'r)c-5-_R2 < u_(-k't)p_(k'r) > OX----_

OUj ,c.
+ G_=(k,i,r) < u_(-k,i)u_(k,r) > (0--_) )

(f)

(g)dpdq < u_C(-k,t)u_(p,r)iqjp°C(q,r) >

dpdq < u_°(-k,t)u_(p,r) OP°° "
_-_Tj (q, r) > (h)

< u_(-k,r)p_(p,r)iqjp_(q,r) > (i)

Op _ .

< u_(-k,r)p_(p,r)-_i(q,r ) > (j)

OP
(k)

(5

Several of these terms either vanish identically, or vanish to the present order of

approximation. As the same arguments will apply to all subsequent correlations, we give

the argument for each term.

Note first that G_ _' should be replaced by the scalar G p* using Eq. (31). The propor-

tionality of Gf u to kj causes several terms to vanish.

(a), (b) both vanish to this order: correlation < u°°p _ > is zero in homogeneous turbu-

lence; a nonvanishing contribution will require one additional gradient in X, T leading to

a higher order term. This argument also applies to terms (e),(j),(k)

(c) vanishes identically on integration over k because it changes sign under k _ -k. This

argument also shows that (l) vanishes.

(d) is a gradient transport contribution analyzed below.

(f) is a nonvanishing turbulence transport term discussed below. Other terms of this type

are (h) and (i).

(g) vanishes since it is changes sign under the simultaneous transformation of wavevectors

p --_ -p, q _ -q. k --+ -k. This transformation is admissible because it preserves the

triangle condition k = p + q.
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The nonvanishing terms are (d), (f), (h), (i). Of these terms, (d) contains a mean flow

gradient, and (f), (h), (i) will depend on gradients of turbulence quantities. Note that

although (f) vanishes to lowest order, it is possible that it makes a nonvanishing contribu-

tion at higher order in TSDIA. The resolution of this issue is left to further research. The

terms (h), (i) are triangle integral terms of a type also discussed by Yoshizawa. 1

B. < u ip °c >

[ /o'-- < u ip°C > = l
dk dr

Op _

{ + a_P(k,t,r) < p_(-k,t)--_(k,r) >

+ G_P(k,t,r) < p_(-k,t)Uj OP_(k r) >
OXj _ '

+ G_P(k,t,r) < p_(-k,t)Ujikjp_(k,r) >
OP

+ G_P(k,t,r) < p_(-k,t)u_(k,r) > OX----j

+ G_'V(k't'r)7 < P_(-k't)p_(k'r) > OX----]

Op_
+ G]P(k,t,r) < p_(-k,t)---_---r (k, r) >.

fk OP_+ G_P(k,t,r) dpdq < p_(-k,t)u_(p,r)_xj(q,r) >
=p+q

[ dpdq < p_(-k,t)u_(p,r)iqjP_(q, r) >G_P(k,t,r)+
Jk =p+q

( os)

(a)

(b)

(c)

(f)

(g)

(h)

dpdq < p_(-k,t)p_(p,r)iqjP_(q, r) > (i)

Op _ ,
dpdq < p_(-k,t)p_(p,r)-8--_,tq, r) > (J)

t_A j

oP (k)
-GiT(k't'r)c-Y-_R 2 < P_(-k't)p_(k'r) > OX---_

, OUj ,c}
GU-(k _,_) < p_(-k,t)u_(k,r) > I-_p) (I)+ ij_ ;,

Arguments like those used in case A show that the nonvanishing terms are (c), (h), (j), (k).

Of these, only (k) depends explicitly on the mean flow.

C. < u-Vp _ >

It will be convenient to separate the terms containing iki and the terms containing

O/OXi, which will be denoted by the subscripts x and X respectively. This gives for the
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terms containing iki,

/ /0'- < u-V_p _ >= dk dr

{ + a_'P(k, t, _) < -ikip_(-k, t) (k, r) >

• _ 0p _

+ a,"'(k,t,T)< -,k_p (-k,t)Uj-ff-X-T(k,r) >
,J

+ G_P(k,t,r) < -ikip_(-k,t)Ujikjp_(k,r) >

oP
+ a_P(k't'_)< -ikip_(-k't)u_C(k'r) > OX----]

out
+ a_'P(k,t,_)7 <-ikip_(-k,t)p_(k,r) >-

OXj

OP_ T)>
t,r) < -ikip_(-k,t)--O-_r (k ,

f

t, r) ..]u=p+q dpdq

t, r) Jk=p+q

_)__2_1
_' c2R2 fk=p+q

t' r) c@R2 j/k=p+q

+ aF(k,

+ ayP(k,

+ aT'(k,

_ GUUtk
t 3 _

- aF(k,

- GiT(k,

00_

<-ikip_(-k,t)uC_(p,r)_x)(q,r ) >

dpdq < -ikip_(-k,t)u_(p,r)iqjp_C(q,r) >

(109)

(a)

(b)

(¢)

(d)

(e)

(f)

(g)

(h)

dpdq < -ikip_(-k, t)p_(p, r)iqjp_(q, r) > (i)

F_ OR _ z

dpdq <-ikip_(-k,t)p_(p, ,0---_jtq, r) > (j)

1 OP

t'r) c--_R2 <-ikip_(-k't)p_(k'r) > OX----] (k)

out c
+ G_f(k,t,r) < -ikip_(-k,t)u_(k,r) > (-_p) } (l)

The nonvanishing correlations are (a),(b),(e),(f),(g),(j). Of these, only (e) depends

explicitly on the mean flow.

The terms corresponding to those of Eq. (109) in which iki is replaced by O/OXi are

/ /0'-- < u. XTxpC¢ >= dk dr

Op_ Op_ _) >
{ + G_'(k,t,r)< _(-k,t)--_--(k,

Op _ • Op _ •

+ Gy'(k,t,r) < _(-k,t)Uj_=_(k,r) >
./

ttp

+G i (k,t,r) < (-k,t)U_kjp_(k,r) >

(110 7

(a)

(b)

(_)
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Op_(_k,t)u_(k,r ) > OP
+ G_P(k't'r) < -_i OXj

Op_ ouj
+ G_ p(k't'r)7 < -0-_-/(-k't)p_(k'r) > OX---j

+ G_P(k, t, r) < -k, t k, r) >

+ G_P(k't'r)/k dpdq <
=p+q

+ G_P(k, t, r) fk dpdq <
=p+q

OP_ ( k OP°°
_- ,t)u_(p,r)-_j(q,r) >OXi

O_(-k,t)u_(p,r)iqjp_C(q,r) >

(d)

(_)

(I)

(g)

(h)

c2__ I OP_ o0 r) (i)"" _ dpdq < _:_-/(-k,t)p (p,r)iqjp_(q, >- Gij (k, t, r) =P+q

fk OP_ t-k OP_u. 1 dpdq < OXi_ ,t)P°°(P,r)-_j(q, r) > (J)-- Gij (k, t, r)c-5--RSR2 =p+q

OP
.. r)______1 OP_t_ k t)p_(k,r) > (k)

- G 0 (k,t, c2R 2 < OXi _ ' OXj

uu ( OUj )c
OPt( k t)u_(k,r) >+ a,_ (k,_,r) < _,- , "b-g_" } (l)

In determining which terms are to be retained, it must be noted that, unlike previous cor-

relations, there is no leading derivative with respect to X. Therefore, terms containing up

to two derivatives with respect to X and T must be retained. Therefore, the nonvanishing

terms are (c), (h), (j), (k).

D. < u_u >

- < u_uj >=f dk dr

Ull fk r2K) _ " 00

1 dpdq < u i (-k,t)p (p,r)qmp (q,r) >
{ -Gj,_(k,t,r)c-7-- _ =p+q

1 fk dpdq < u_(-k,t)p°_(P, r) Op°°_u 0--_ (q, r) >
- Gjm(k,t,r)c-_R 2 =p+q

1 OP

-C}'_(k't'r)c--Y-RZR2 < u_(-k't)p_(k'r) > -OXm

, OUm, C

+ a_(k,t,_) < u_(-k,t)u_(k,r) > (O--_-v)

+ C'ff(k,t,r) < u_(-k,t) Op_ r) >--b-f-(k,

" OP_ k
+GyP(k,t,r) < u_'(-k,t)U,o-_p ( ,r)>

(111)

(a)

(b)

(c)

(d)

(_)

(f)
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+G_P(k,t,r) < u_(-k,t)Upikpp_C(k,r) >

OP

+ G_P(k,t,r) < u_(-k,t)u_(k,r) > OX----_

+ G_P(k,t,r)_/ < u_(-k,t)p_(k,r) >

oo

+G_P(k,t,r) <u_(-k,t)-_r (k,r)>

+a_ (k, t,,-)
=p+q

+ C}_P(k' t' r) _k=p+q

dpdq < U_(--k,t)u_m(p,r)iqmp_(q,r) >

dpdq < u_(-k,t)u_(p,r) OP_"
o-2-2tq,,') >}

(_)

(h)

(i)

(J)

(k)

(0

The nonvanishing terms are (b), (d), (g), (k). Of these, only (d) depends explicitly on the

mean flow.

E. < u. XTu _ >

Again writing the terms in ikj and O/OXj separately, denoting them respectively by

subscripts x and X, the terms in ikj are

/ /o'- <(u-Vxu_)i >= dk dr (112)

{ - Gy_(k't'r)cz-_ f k (a)
=p+q

- Gjm(k,t,r) =p+q dpdq < -ikju_(-k,t)p*C(p,r)-_-_(q,r) > (b)

_ 1 OP

-Gjm(k't'r)c-_R2 <-ikju_(-k't)P°°(k'r) > OXm (c)

_ ik. _ _ (OUm)c
+ aim(k,t,r) < -, ju i (-k,t)Up (k,r) > ,OXp / (d)

0 _

+ G_'(k,t,r) <-ikiup(-k,t)-_T(k,r ) > (e)

OpO_ .

+ a;_"(k,t, ,-)< -ikju_(-k,t)Up _-_-_p (k, r) > (f)

+ G_P(k,t,, -) <-ikiu_e(-k,t)Upik,p°_(k,r) > (g)

OP

+ a}'"(k,t,,-) <-ikju_(-k,t)u_(k,r) > OX-----_ (h)

ou.
+ a}'_'(k't'")v < -ikju_(-k't)p_(k'r) > OX----p (i)

OO_

+ ay'(k,t,_-)< -ikju_(-k,t)-_r(k,r ) > (j)

dpdq < -ikju_C(-k,t)p_(p,r)iqmp_(q,r) >
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+ GaP(k , t, r) fk=p+q dpdq

+ G;P(k,t,r) fk=.+dP dq

<-ikju_(-k,t)u_(p,r)iqmp_(q, r) >

<-ikju_(-k,t)u_(p,r) Op°_0-_z(q, _) > }

The nonvanishing terms are (a), (e), (f), (h), (i), (j), (l).

on the mean field.

The terms dependent on O/OXj are

(k)

(5

Of these, (h) depends explicitly

/ /0'-- <(U" VXU_)ij >= -- dk dr

1 fk dpdq{ - ayr_(k,t,r)c-V- _ =p+q

*'_ r) 1__ Jfk dpdq-- G jm ( k, t, ¢2R2 --pWq

1 Ou_. k OP
-Gym(k't'r)c-_R2 < -_j(- 't)p_(k'r) > OX---_

u, Ou_ (_k.t)u_(k,r) > .OUm.c
+ Gjm(k't'r) < OXj ' (-_p)

op_ _)>+ G_V(k,t,r) < (-k,t)--_--(k,
3

Ott c_ Op a_ ,. ,

+ a 2 P(k , t , r ) < -_j ( - k , t ) Up -ff-_p t K, r ) >

Ou_, k
+ ayv(k,t,r)< O--_j (- ,t)U, ik,p_(k, r) >

Ou_ k OP
+ GyV(k,t,r) < -_j(- ,t)u_(k,r) > OX---_

ou,
Ou_ (_k,t)p_(k,r ) > __

+ GyP(k, t, r)7 < OXj OXp

Op _
0u_ (_k, t)_.__7__r(k, t ) >+ GyP(k,t,r) <

Ou_ t
< _--_f(-k, )p (p,r)iqmp_(q,r) >

Ou_. k OP_
< -_--f(- ,t)p_(p,r)-o--_m(q,r) >

+ GYP(k't'r)/k dpdq
=p+q

+ GyV(k't'r) fk dpdq
=p+q

< -_j(--k,t)u_(p,r)iqmP_(q, r) >

Ou_. k OP_ ,
< _--_j (- ,t)u_(p,r)o--_-_tq, r) >}

Again note the action of O/OXj on u_(-k) only. The nonvanishing

(b),(d),(g),(k). Of these, (d) depends explicitly on the mean field.

(113)

(a)

(b)

(c)

(d)

(_)

(f)

(g)

(h)

(i)

(J)

(k)

(l)

terms are
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F. < ppOO >

/ /o'_ < ppOO > = dk dr

{ + G"(k,t,r) < p°_(-k,t) Op°_-b_- (k, _) >
oo

a,p . _) < p°°(-k,t)Ujg£-q(k,_) >+ (kt, Op

+ G"(k, t, r) < p°°(-k, t)Ujikjp°°(k, r) >

OP

+ GPP(k,t,r) < p°°(-k,t)ucff(k,r) > OX----_

ouj
+ aP'(k,t,_)-y < p°°(-k,t)p°°(k,r) > --

OXj

+ a"(k,t,_) < p°°(-k,t)-_r (k,Op°° r) >

+ GPP(k, t, r) Jfk dpdq
=p+q

+ GPP(k, t, r) fk dpdq
=p+q

pu 1

-- Gj (k,t,r)c-_R 2 _k=p+q

_)___2_
-af_(k't' c_R2 fk=p+q

< p°°(-k,t)u_°(p,r) OP °°.
-_-_j (q, r) >

< p°°(-k,t)uCff(p,r)iqjp°C(q,r) >

dpdq < p°°(-k,t)p_(p,r)iqjp_(q,r) >

r _OP°°
dpdq < p°C(-k,t)p°°(p, ,_-j(q,r) >

1 OP

-Gf_(k't'r)c-_R2 < P°°(-k't)P°°(k'r) > OX---_

, OUt.c
+gf'(k,t,r) < p°°(-k,t)u_(k,r) > [-_p) }

(114)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(J)

The nonvanishing terms are (a),(b),(e),(f),(g),(j). Of these, (e) depends explicitly on

the mean fields.

Appendix III. Approximate evaluation of turbulent correlation terms

The evaluation of correlations which depend on gradients of turbulence quantities in

Eqs. (108)-(112) is more elaborate. In general, it is necessary to replace p_ by u _ using

the Poisson equation and apply the quasinormal hypothesis to close the resulting moments

of the velocity field. Provided that the integrals converge, it is possible to determine in

advance at least the structure of the resulting single point moments. Since it will be useful

to have a preliminary indication of the type of model which results, the form of these terms
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will bederived here,limiting attention to thoseterms which canbe evaluated at the lowest

order in TSDIA. Shimomura's result Eq. (52) is obtained by suchhigher order analysis,

and referencecan be made to Ref. 20 for the required procedure.

A. Terms added to mean prefecture equation

Moments from Eq. (107):

(f) vanishes to lowest order since there are no isotropic functions of u _.

(h) _ (.9(V, K 4, c -1 , c -2 ) where the notation indicates only the total power of each factor

in the result.

(i) vanishes to lowest order since it is of odd order in u _.

Moments from Eq. (108):

(c) vanishes to lowest order since there is no isotropic invariant of U.

(h) vanishes like Eq. (107f).

(j ) ~ O(V, c-2, I(4, _-1)

Moments from Eq. (109):

(a), (b) _ O( D/DT, K _/2, c -2)

(f) vanishes to lowest order

(g) ~ O(V, c-2, K 4,c -1 )

(i) ~ Iiec -2

Moments from Eq. (110):

(c) vanishes to lowest order since there is no isotropic invariant of U.

(h) vanishes to lowest order

(j) ~ O(V2,K4,_-l,c -2)

Term (k) is of a special type since it contains a mean velocity gradient, but its coeffi-

cient depends on gradients of turbulence quantities. The structure of this term is

(k) ~ [O(V,I_'3,_-1,c-2)] vP.

The mean pressure equation, with these effects added, has the form

0_PP+ U. VP + _,PV-U = V-(u'PVP) - (_/- 1)IIV • U
0_

Clc-2Ke + C20( D--D--e)
DT + C30(V'V'K4¢-lc-2)
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where the constants C1, C2, Cs can be evaluated theoretically by evaluating the relevant

integrals. The term containing a convective derivative occurs in the higher order TSDIA

analysis of incompressible turbulence.

B. Terms added to mean velocity equation

Moments from Eq. (111):

(b) vanishes to lowest order

(g) vanishes to lowest order

(k) _ I(2c -2

Moments from Eq. (112):

(a) vanishes to lowest order.

(e) vanishes to lowest order.

(f) vanishes to lowest order.

(i) vanishes to lowest order.

(j) ,'.., K1/2ec -2

(l) ~ o(v, K2,c -_)

Moments from Eq. (113):

(b) vanishes to lowest order.

(g) vanishes to lowest order.

(k) ~ O(V, K2,c -2)

Term (d), like (110k) depends on mean velocity gradients. It has the form

(d) ~ [O(V,K_,_-')Jv. u

Moments from Eq. (114):

(a),(b) .._ D/DT(IC4¢-lc -2)

(f) vanishes to lowest order.

(g) vanishes to lowest order.

(j) "., O(v, Kg/2 _-l,c -2)

Note that this group of terms appears with an additional factor of c -2 and are therefore

of higher order in Mr.
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These terms modify the meanvelocity equation asfollows:

+U-VU+ VP=V-{- KI+_,[VU+(Vu)T] s

+ V(v_"V • U) + 1Vp
R

+ C4VK1/%c -2 + CsO(V 2, K 2, c -2 ) + C60(V, K _ , e -1 )V. U

As before, the constants C4, C5, C6 are obtained by evaluating the relevant integrals.
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